Two young MicroRNAs originating from target duplication mediate nitrogen starvation adaptation via regulation of glucosinolate synthesis in Arabidopsis thaliana.

نویسندگان

  • Hua He
  • Gang Liang
  • Yang Li
  • Fang Wang
  • Diqiu Yu
چکیده

Nitrogen is an essential macronutrient required for plant growth and development. A number of genes respond to nitrogen starvation conditions. However, the functions of most of these nitrogen starvation-responsive genes are unclear. Our recent survey suggested that many microRNAs (miRNAs) are responsive to nitrogen starvation in Arabidopsis thaliana. Here, we identified a new miRNA (miR5090) from the complementary transcript of the MIR826 gene. Further investigation uncovered that both miRNA genes recently evolved from the inverse duplication of their common target gene, ALKENYL HYDROXALKYL PRODUCING2 (AOP2). Similar to miR826, miR5090 is induced by nitrogen starvation. By contrast, the AOP2 transcript level was negatively correlated with miR826 and miR5090 under nitrogen starvation. GUS-fused AOP2 expression suggested that AOP2 was posttranscriptionally suppressed by miR826 and miR5090. miRNA transgenic plants with significantly low AOP2 expression accumulated fewer Met-derived glucosinolates, phenocopying the aop2 mutants. Most glucosinolate synthesis-associated genes were repressed under nitrogen starvation conditions. Furthermore, miRNA transgenic plants with less glucosinolate displayed enhanced tolerance to nitrogen starvation, including high biomass, more lateral roots, increased chlorophyll, and decreased anthocyanin. Meanwhile, nitrogen starvation-responsive genes were up-regulated in transgenic plants, implying improved nitrogen uptake activity. Our study reveals a mechanism by which Arabidopsis thaliana regulates the synthesis of glucosinolates to adapt to environmental changes in nitrogen availability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses

The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...

متن کامل

Quantitative proteomics reveals the importance of nitrogen source to control glucosinolate metabolism in Arabidopsis thaliana and Brassica oleracea

Accessing different nitrogen (N) sources involves a profound adaptation of plant metabolism. In this study, a quantitative proteomic approach was used to further understand how the model plant Arabidopsis thaliana adjusts to different N sources when grown exclusively under nitrate or ammonium nutrition. Proteome data evidenced that glucosinolate metabolism was differentially regulated by the N ...

متن کامل

MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana.

MicroRNAs (miRNAs) are short regulatory RNAs processed from partially self-complementary foldbacks within longer MIRNA primary transcripts. Several MIRNA families are conserved deeply through land plants, but many are present only in closely related species or are species specific. The finding of numerous evolutionarily young MIRNA, many with low expression and few if any targets, supports a ra...

متن کامل

Uncovering miRNAs involved in crosstalk between nutrient deficiencies in Arabidopsis

Integrating carbon (C), nitrogen (N), and sulfur (S) metabolism is essential for the growth and development of living organisms. MicroRNAs (miRNAs) play key roles in regulating nutrient metabolism in plants. However, how plant miRNAs mediate crosstalk between different nutrient metabolic pathways is unclear. In this study, deep sequencing of Arabidopsis thaliana small RNAs was used to reveal mi...

متن کامل

Identification of Nitrogen Starvation-Responsive MicroRNAs in Arabidopsis thaliana

microRNAs (miRNAs) are a class of negative regulators that take part in many processes such as growth and development, stress responses, and metabolism in plants. Recently, miRNAs were shown to function in plant nutrient metabolism. Moreover, several miRNAs were identified in the response to nitrogen (N) deficiency. To investigate the functions of other miRNAs in N deficiency, deep sequencing t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 164 2  شماره 

صفحات  -

تاریخ انتشار 2014